

Semester : V			Integ	grated M.Sc. Mathema	Academic V	Year : 2019-20		
			Subject : 060	090502 CC12 Integr	al Transforms			
				Teaching Schedule				
Cours	se Outc	omes: Upor	n completion of the course student shall be	e able to				
CO1: utilize Laplace Transform to a basic integrodifferential equation.								
CO2: solve linear differential equations with constant coefficients and unit step input functions using the Laplace transform.								
CO3:	analyse	application	ns of hyper geometric differential equation	is using Mellin transform	1.			
CO4:	identify	specific ap	plication in signal analysis and Imagine Te	echniques using Mellin tr	ansform.			
CO5:	solve ap	plications l	based on Cartesian Coordinates in one var	iable using Hankel Trans	sform.			
CO6:	make a	use of Hank	kel transforms to solve application of speci	ial functions.				
C07:	underst	and how in	tegral transforms can be used to solve a va	ariety of differential equa	ations.			
Unit	Sub Unit	No. of Lect.(s)	Topics	Reference Chapter/ Additional Reading	Methodology to be used	Active Learning Activities	Evaluation Parameter	
Unit 1: Applications of Laplace Transforms								
[17]	1.1	4	Solution of ordinary Differential Equations, Formulation of integral equations		Chalk & Talk	For Slow Learner: Students must write answer of question(s) given by teacher after completion of each method and verified by teacher to resolve any query of students. For Advance Learner: Student will solve exercise given in book after completion		
	1.2	4	Solution by successive substitutions and successive approximations	Ch#4 Debnath L., Integral			Unit Test -1	
	1.3	4	Integral equations of convolution type and their solutions by Laplace transforms	Applications			Assignment-1	
	14	3	Applications on harmonic oscillator in			of Unit.		

1.4

3

resisting and non – resisting medium

Academic Year : 2019-20 **Integrated M.Sc. Mathematics** Semester : V Subject: 060090502 CC12 Integral Transforms **Unit 2: Mellin Transforms and Their Applications** [23] For Slow Learner: 2.1 2 Introduction, Definition Students must write answer of Basic operational properties of Mellin question(s) given by teacher 2.2 4 transforms Ch#8 after completion of each method Unit Test -1 2.3 4 Convolution theorem Debnath L., Integral and verified by teacher to Chalk & Talk and 2 Transforms & their resolve any query of students. 2.4 5 **Inverse Mellin transforms** Assignment-1 For Advance Learner: Applications Student will solve exercise 2.5 5 **Applications of Mellin transforms** given in book after completion of Unit. **Unit 3: Hankel Transforms** [18] **For Slow Learner:** 3.1 2 Introduction. Definition Students must write answer of **Operational properties of Hankel** question(s) given by teacher 3.2 3 transforms Ch#7, Ch#13 after completion of each method Inverse Hankel transforms Debnath L., Integral and verified by teacher to Unit Test -2 3.3 3 Chalk & Talk Transforms & their resolve any query of students. Assignment-2 3 Finite Hankel transforms 3.4 Applications For Advance Learner: Student will solve exercise 3.5 Properties of finite Hankel transforms given in book after completion 4 of Unit. **Unit 4: Applications of Hankel Transforms** [17] For Slow Learner: Applications of infinite Hankel Ch#7. Ch#13 3 4.1 Students must write answer of Internal transforms Debnath L., Integral question(s) given by teacher Chalk & Talk Examination Transforms & their Applications of finite Hankel after completion of each method Assignment-2 3 4.2 Applications transforms and verified by teacher to

Semester : V			Integ Subject : 060	Academic Year : 2019-20			
	4	ł.3	3	Applications on free vibration on different Membrane, Steady temperature,		resolve any query of students. For Advance Learner:	
	4	ł.4	3	Applications on Steady temperature		Student will solve exercise	
	4	ł.5	3	Applications on Potential of field		of Unit.	

Text books:

1. Debnath L., "Integral Transforms & their Applications", CRC press, New York, 2006

Reference books:

- 1. Sneddon I. N., "Special Functions of Mathematical Physics & Chemistry", Longman.
- 2. Zemanian A. H., "Generalized Integral Transformations", John Wiley & Sons, New York.
- 3. Andrews L. C. & Shivamoggi B. K., "Integral Transforms for Engineers", SPIE Press, Bellingham, 1999.
- 4. Andrews L. C. & Phillips. R. L., "Mathematical Techniques for Engineers & Scientists", PHI, New Delhi, 2006.

Course Objectives and Course Outcomes Mapping:

- To provide practice for of solving the real problem in scientific way using techniques of Different types of Transforms. CO1, CO2, CO3, CO7
- Understand the concept of time-bandwidth product and the need for a finite range of spectral components to support a "real" signal. CO4, CO5, CO6, CO7

Semester : V

Integrated M.Sc. Mathematics Subject : 060090502 CC12 Integral Transforms

Academic Year : 2019-20

Course Units and Course Outcomes Mapping:

Unit No.	nit No. Unit		Course Outcomes							
	CO1	CO2	CO3	CO4	CO5	CO6	CO7			
1	Applications of Laplace Transforms	~	\checkmark					~		
2	Mellin Transforms and Their Applications			~	~			~		
3	Hankel Transforms					\checkmark	\checkmark	\checkmark		
4	Applications of Hankel Transforms					\checkmark	\checkmark	~		

Programme Outcomes (PO)

PO1: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

PO3: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

PO4: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Type your text

Semester : V

Integrated M.Sc. Mathematics Subject : 060090502 CC12 Integral Transforms

Academic Year : 2019-20

Programme Outcomes and Course Outcomes mapping:

Programme Outcomes			Cou	rse Outco	omes		
	CO1	CO2	CO3	CO4	CO5	CO6	CO7
P01	\checkmark			√		√	√
P02		√	✓		√		
P03		√		√		\checkmark	
P04			✓		√		✓

